Problem 11B,9

For each $r \in[0,1)$ think of P_{r} as an operator on $L^{2}(\partial D)$.

- Show that P_{r} is a self-adjoint compact operator for each $r \in[0,1)$.
- For each $r \in[0,1)$, find all eigenvalues and eigenvectors of P_{r}.
- Prove or disprove: $\lim _{r \uparrow 1}\left\|I-P_{r}\right\|=0$.

Proof. - The fact that P_{r} is self-adjoint follows directly from changing the order of integration. For any sequence of functions f_{n} in the unit ball of $L^{2}(\partial D)$, we can easily find a subsequence which converges weakly. Without loss of generality, wo still denote it by $\left\{f_{n}\right\}_{n \in \mathbb{N}}$. Now we claim $P_{r}\left(f_{n}\right)$ is a Cauchy sequence in $L^{2}(\partial D)$. In fact, for any $\epsilon>0$, there exists $N, N_{1} \in \mathbb{N}$ such that

$$
\sum_{k=N}^{\infty} r^{2 k}<\epsilon
$$

and for any $m, n \geq N_{1}, k \in[0, N]$,

$$
\left|\hat{f_{m}}(k)-\hat{f_{n}}(k)\right|<\epsilon,
$$

Then it is easy to check

$$
\sum_{k=-\infty}^{\infty} r^{2|k|}\left|\hat{f_{m}}(k)-\hat{f_{n}}(k)\right|^{2}<C \epsilon
$$

for some universal constant C. This finishes the proof of the above claim.

- Suppose $P_{r} f(z)=\lambda f(z)$, then

$$
\sum_{k=-\infty}^{\infty} r^{|n|} \hat{f}(n) z^{n}=\lambda f(z)
$$

So $r^{|n|} \hat{f}(n)=\lambda \hat{f}(n)$ for all integer n. Since $r<1$, this forces $\hat{f}(n)=0$ which implies $f=0$,or $\lambda=r^{\left|n_{0}\right|}$ for some n_{0}. In the latter case, the correspodning $f=c z^{n_{0}}$ or $f=c z^{-n_{0}}$. This gives all possible eigenvalues and eigenvectors.

- Regard $f=\sum_{k=-\infty}^{\infty} \hat{f}(n) z^{n}$, then $\left\|\left(I-P_{r}\right) f\right\|^{2}=\sum_{k=-\infty}^{\infty}\left(1-r^{|n|}\right)^{2}|\hat{f}(n)|^{2}$. If the result is true, then the right hand side should go to zero uniformly in f. But we know that $x^{n}, x \in(0,1)$ is not uniformly converging to the constant 1 , which implies the result is false. In fact, one can easily construct a series $r_{i} \rightarrow 1, f_{i} \in L^{2}(\partial D)$ to show the convergence is not uniform.

Problem 11B,11

Show that if $f, g \in L^{1}(\partial D)$ then

$$
(f * g)^{\tilde{(}}(t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \tilde{f}(x) \tilde{g}(t-x) d x
$$

for those $t \in \mathbb{R}$ such that $(f * g)\left(e^{i t}\right)$ make sense.
Proof. This follows directly from the definition.

Problem 11B,15

Prove that if $f, g \in L^{2}(\partial D)$ then for every $n \in \mathbb{Z}$

$$
(f g)^{\hat{(}}(n)=\sum_{k=-\infty}^{\infty} \hat{f}(k) \hat{g}(n-k)
$$

Proof. One can easily see the result is true for z^{k}, which is an orthogonal basis for $L^{2}(\partial D)$. Then the result follows from approximating genenal function by these basis.

Problem 11B,18

Prove Wirtinger's inequality: If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuously differentiable 2π-periodic function and $\int_{-\pi}^{\pi} f(t) d t=0$, then

$$
\int_{-\pi}^{\pi}(f(t))^{2} d t \leq \int_{-\pi}^{\pi}\left(f^{\prime}(t)\right)^{2} d t
$$

with equality holds if and only if $f(t)=a \sin (t)+b \cos (t)$ for some constant a, b.
Proof. The proof uses Parseval inequality. If we use the Fourier series of the form $\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos k x+b_{k} \sin k x$ for f, then the assumption implies $a_{0}=0$. Then the Wirtinger's inequality follows directly from Parseval inequality. The equality case also follows easily. For a slightly more general result, one can see Stein's book "Fourier Analysis" page 90-91 exercise 11.

Problem 11C,5

Prove that if p is a polynomial on \mathbb{R} with complex coefficients and $f: \mathbb{R} \rightarrow \mathbb{C}$ is defined by $f(x)=p(x) e^{-\pi x^{2}}$, then there exists a polynomial q on \mathbb{R} with complex coefficients such that $\operatorname{deg} q=\operatorname{deg} p$ and $\hat{f}(t)=q(t) e^{-\pi t^{2}}$ for all $t \in \mathbb{R}$.

Proof. We only need to consider the case when $p(x)=x^{k}$ for some nonnegative integer k. 11.51 implies the case when $k=0$. When $k=1$, the calculation in 11.51 shows that

$$
-2 \pi i \int_{-\infty}^{\infty} x e^{-\pi x^{2}} e^{-2 \pi i x t} d x=-2 \pi t e^{-\pi t^{2}}
$$

This is exactlt the case $k=1$. For $k=2$,

$$
\begin{align*}
\int_{-\infty}^{\infty} x^{2} e^{-\pi x^{2}} e^{-2 \pi i x t} d x & =\int_{-\infty}^{\infty} x e^{-2 \pi i x t} d\left(\frac{e^{-\pi x^{2}}}{-2 \pi}\right) \\
& =\int_{-\infty}^{\infty}\left(\frac{e^{-\pi x^{2}}}{2 \pi}\right)\left(e^{-2 \pi i x t}-x(-2 \pi i t) e^{-2 \pi i x t}\right) d x \tag{1}
\end{align*}
$$

Now one can easily see that using the case $k=0$, 1 , we can conclude the case when $k=2$. For more general k, the result follows from induction argument.

Problem 11C, 6

Suppose

$$
f(x)=\left\{\begin{array}{rl}
x e^{-2 \pi x} & x>0 \\
0 & x \leq 0
\end{array}\right.
$$

Show that $\hat{f}(t)=\frac{1}{4 \pi^{2}(1+i t)^{2}}$ for all $t \in \mathbb{R}$.
Proof.

$$
\begin{align*}
\hat{f}(t) & =\int_{0}^{\infty} x e^{-2 \pi x-2 \pi i t x} d x \\
& =\frac{1}{4 \pi^{2}} \int_{0}^{i n f t y} x e^{-x-i t x} d x \tag{2}
\end{align*}
$$

Now we calculate the real part and imaginary part.

$$
\begin{align*}
\int_{0}^{\infty} x e^{-x} \cos t x d x & =\int_{0}^{\infty} x e^{-x} d\left(\frac{\sin t x}{t}\right) \\
& =-\int_{0}^{\infty}\left(e^{-x}-x e^{-x}\right) \frac{\sin t x}{t} d x \tag{3}
\end{align*}
$$

One can easily calculate that

$$
\int_{0}^{\infty} e^{-x} \sin t x d x=\frac{t}{1+t^{2}}
$$

so we get

$$
4 \pi^{2}(\operatorname{Re}(\hat{f}(t)))=-\frac{1}{1+t^{2}}-4 \pi^{2}\left(\frac{1}{t} \operatorname{Im}(\hat{f}(t))\right)
$$

Integration by part again just as above, then we can easily get the result.

Problem 11C, 8

Suppose $f \in L^{1}(\mathbb{R})$ and $n \in \mathbb{Z}^{+}$. Define $g: \mathbb{R} \rightarrow \mathbb{C}$ by $g(x)=x^{n} f(x)$. Prove that if $g \in L^{1}(\mathbb{R})$, then \hat{f} is n times continuously differentiable on \mathbb{R} and

$$
(\hat{f})^{(n)}(t)=(-2 \pi i)^{n} \hat{g}(t)
$$

for all $t \in \mathbb{R}$.
Proof. We only need to note that by calculation in 11.50 , we have

$$
(\hat{f})^{\prime}(t)=-2 \pi i \int_{-\infty}^{\infty} x f(x) e^{-2 \pi t x} d x
$$

Then similar argument gives the result.

Problem 11C,9

Suppose $n \in \mathbb{Z}^{+}$and $f \in L^{1}(\mathbb{R})$ is n times continuously differentiable and $f^{(n)} \in L^{1}(\mathbb{R})$. Prove that if $t \in \mathbb{R}$, then

$$
\left(f^{(n)} \hat{)}(t)=(2 \pi i t)^{n} \hat{f}(t)\right.
$$

Proof. First note by assumption, we know that for any integer $k \in[0, n], \lim _{x \rightarrow i n f t y} f^{(k)}(x)=0$, which is easy to see by an contradiction argument. Then using the same argumnet as in 11.54, we can finish the proof. \square

